数据结构--树

树,计算机中比较纠结的一种数据结构。种类太多了,涉及到的算法也太多了。主要目的是汇总一下。参考了网上的几篇博客。12

二叉树

就是binary tree,搜索二叉数特点:

  1. 所有非叶子结点至多拥有两个儿子(Left和Right);
  2. 所有结点存储一个关键字;
  3. 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

但二叉树在经过多次插入与删除后,有可能导致不同的结构, 例如下图也是一个二叉数,但是其查找效率已经是线性的了:

所以,使用二叉树还要考虑尽可能让二叉树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题; 实际使用的二叉数都是在原二叉树的基础上加上平衡算法, 即“平衡二叉树”;如何保持二叉树结点分布均匀的平衡算法是平衡二叉树的关键; 平衡算法是一种在二叉数中插入和删除结点的策略。

平衡二叉树

形态匀称的二叉树称为平衡二叉树 (Balanced binary tree), 其严格定义是:

一棵空树是平衡二叉树;若 T 是一棵非空二叉树,其左、右子树为 TL 和 TR ,令 hl 和 hr 分别为左、右子树的深度。当且仅当

  • TL 、 TR 都是平衡二叉树;
  • 并且满足公式

\[ \left| {hl - hr} \right| \leq 1 \]

时,则 T 是平衡二叉树。

相应地定义 $ hl - hr $ 为二叉平衡树的平衡因子 (balance factor) 。因此,平衡二叉树上所有结点的平衡因子可能是 -1 , 0 , 1 。换言之,若一棵二叉树上任一结点的平衡因子的绝对值都不大于 1 ,则该树是就平衡二叉树。

可以采用动态平衡技术保持一个平衡二叉树。构造一个平衡二叉树的时候,也可以采用相同的方法,默认初始时,是一个空树,插入节点时,通过动态平衡技术对二叉树进行调整。

1.动态平衡技术

Adelson-Velskii 和 Landis 提出了一个动态地保持二叉排序树平衡的方法,其基本思想是: 在构造二叉排序树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,如果是因插入结点而破坏了树的平衡性,则找出其中最小不平衡子树,在保持排序树特性的前提下,调整最小不平衡子树中各结点之间的连接关系,以达到新的平衡。通常将这样得到的平衡二叉排序树简称为 AVL 树。

2.最小不平衡子树

以离插入结点最近、且平衡因子绝对值大于 1 的结点作根结点的子树。为了简化讨论,不妨假设二叉排序树的最小不平衡子树的根结点为 A ,则调整该子树的规律可归纳为下列四种情况:

  • LL 型:

新结点 X 插在 A 的左孩子的左子树里。调整方法见下图 (a) 。图中以 B 为轴心,将 A 结点从 B 的右上方转到 B 的右下侧,使 A 成为 B 的右孩子。

  • RR 型:

新结点 X 插在 A 的右孩子的右子树里。调整方法见下图 (b) 。图中以 B 为轴心,将 A 结点从 B 的左上方转到 B 的左下侧,使 A 成为 B 的左孩子。

  • LR 型:

新结点 X 插在 A 的左孩子的右子树里。调整方法见下图 (c) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的左上方转到 X 的左下侧,使 B 成为 X 的左孩子, X 成为 A 的左孩子。第二步跟 LL 型一样处理 ( 应以 X 为轴心 ) 。

  • RL 型:

新结点 X 插在 A 的右孩子的左子树里。调整方法见图 (d) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的右上方转到 X 的右下侧,使 B 成为 X 的右孩子, X 成为 A 的右孩子。第二步跟 RR 型一样处理 ( 应以 X 为轴心 ) 。3

B-树

具体讲解之前,有一点,再次强调下:B-树,即为B树。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如人们可能会以为B-树是一种树,而B树又是一种一种树。而事实上是,B-tree就是指的B树。特此说明。

我们知道,B 树是为了磁盘或其它存储设备而设计的一种多叉(下面你会看到,相对于二叉,B树每个内结点有多个分支,即多叉)平衡查找树。但在降低磁盘I/0操作方面要更好一些。

是一种多路搜索树(并不是二叉的):

  1. 定义任意非叶子结点最多只有M个儿子;且M>2;
  2. 根结点的儿子数为[2, M];
  3. 除根结点以外的非叶子结点的儿子数为[M/2, M];
  4. 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  5. 非叶子结点的关键字个数=指向儿子的指针个数-1;
  6. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  7. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  8. 所有叶子结点位于同一层;

如(m=3):

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;
  6. 可以充分利用计算机的局部性。

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:

  1. 其定义基本与B-树同,除了:
  2. 非叶子结点的子树指针与关键字个数相同;
  3. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
  4. 为所有叶子结点增加一个链指针;
  5. 所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

  1. 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  2. 不可能在非叶子结点命中;
  3. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  4. 更适合文件索引系统;

数据库索引采用B+树的主要原因是 B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低)。

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

B*树在非叶子节点添加了指向兄弟的指针,对应数据库,可以方便对索引进行遍历。

红黑树

红黑树,一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

前面说了,红黑树,是一种二叉查找树,既然是二叉查找树,那么它必满足二叉查找树的一般性质。 下面,在具体介绍红黑树之前,咱们先来了解下 二叉查找树的一般性质:

  1. 在一棵二叉查找树上,执行查找、插入、删除等操作,的时间复杂度为O(lgn)。因为,一棵由n个结点,随机构造的二叉查找树的高度为lgn,所以顺理成章,一般操作的执行时间为O(lgn)。至于n个结点的二叉树高度为lgn的证明,可参考算法导论 第12章 二叉查找树第12.4节。
  2. 但若是一棵具有n个结点的线性链,则此些操作最坏情况运行时间为O(n)。

而红黑树,能保证在最坏情况下,基本的动态几何操作的时间均为O(lgn)。

ok,我们知道,红黑树上每个结点内含五个域,color,key,left,right,p。如果相应的指针域没有,则设为NIL。

一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:

  1. 每个结点要么是红的,要么是黑的。
  2. 根结点是黑的。
  3. 每个叶结点(叶结点即指树尾端NIL指针或NULL结点)是黑的。每个叶子结点都带有两个空的黑色结点(被称为黑哨兵),如果一个结点n的只有一个左孩子,那么n的右孩子是一个黑哨兵;如果结点n只有一个右孩子,那么n的左孩子是一个黑哨兵。
  4. 如果一个结点是红的,那么它的俩个儿子都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
  5. 对于任一结点而言,其到叶结点树尾端NIL指针的每一条路径都包含相同数目的黑结点。

如下图所示,即是一颗红黑树(下图引自wikipedia)

关于红黑树的插入删除操作可以参考45.

通过证明可以得出红黑树的高度是 \(\leq 2 \log (n + 1)\)

红黑树和之前所讲的AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。自从红黑树出来后,AVL树就被放到了博物馆里,据说是红黑树有更好的效率,更高的统计性能。6 红黑树和AVL树的区别在于它使用颜色来标识结点的高度,它所追求的是局部平衡而不是AVL树中的非常严格的平衡。AVL树的复杂比起红黑树来说简直是小巫见大巫。红黑树是真正的变态级数据结构。

R树

1984年,加州大学伯克利分校的Guttman发表了一篇题为“R-trees: a dynamic index structure for spatial searching”的论文,向世人介绍了R树这种处理高维空间存储问题的数据结构。本文便是基于这篇论文写作完成的,因此如果大家对R树非常有兴趣,我想最好还是参考一下原著:)。为表示对这位牛人的尊重,给个引用先:

Guttman, A.; “R-trees: a dynamic index structure for spatial searching,” ACM, 1984, 14

R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。如果一个地区有100家餐厅的话,我们就要进行100次位置计算操作了,如果应用到谷歌地图这种超大数据库中,这种方法便必定不可行了。

R树就很好的解决了这种高维空间搜索问题。它把B树的思想很好的扩展到了多维空间,采用了B树分割空间的思想,并在添加、删除操作时采用合并、分解结点的方法,保证树的平衡性。因此,R树就是一棵用来存储高维数据的平衡树。

OK,接下来,本文将详细介绍R树的数据结构以及R树的操作。至于R树的扩展与R树的性能问题,可以查阅相关论文。

如上所述,R树是B树在高维空间的扩展,是一棵平衡树。每个R树的叶子结点包含了多个指向不同数据的指针,这些数据可以是存放在硬盘中的,也可以是存在内存中。根据R树的这种数据结构,当我们需要进行一个高维空间查询时,我们只需要遍历少数几个叶子结点所包含的指针,查看这些指针指向的数据是否满足要求即可。这种方式使我们不必遍历所有数据即可获得答案,效率显著提高。下图1是R树的一个简单实例:

我们在上面说过,R树运用了空间分割的理念,这种理念是如何实现的呢?R树采用了一种称为MBR(Minimal Bounding Rectangle)的方法,在此我把它译作“最小边界矩形”。从叶子结点开始用矩形(rectangle)将空间框起来,结点越往上,框住的空间就越大,以此对空间进行分割。有点不懂?没关系,继续往下看。在这里我还想提一下,R树中的R应该代表的是Rectangle(此处参考wikipedia上关于R树的介绍),而不是大多数国内教材中所说的Region(很多书把R树称为区域树,这是有误的)。我们就拿二维空间来举例。下图是Guttman论文中的一幅图:

我来详细解释一下这张图。先来看下图,首先我们假设所有数据都是二维空间下的点,图中仅仅标志了R8区域中的数据,也就是那个shape of data object。别把那一块不规则图形看成一个数据,我们把它看作是多个数据围成的一个区域。为了实现R树结构,我们用一个最小边界矩形恰好框住这个不规则区域,这样,我们就构造出了一个区域:R8。R8的特点很明显,就是正正好好框住所有在此区域中的数据。其他实线包围住的区域,如R9,R10,R12等都是同样的道理。这样一来,我们一共得到了12个最最基本的最小矩形。这些矩形都将被存储在子结点中。下一步操作就是进行高一层次的处理。我们发现R8,R9,R10三个矩形距离最为靠近,因此就可以用一个更大的矩形R3恰好框住这3个矩形。同样道理,R15,R16被R6恰好框住,R11,R12被R4恰好框住,等等。所有最基本的最小边界矩形被框入更大的矩形中之后,再次迭代,用更大的框去框住这些矩形。我想大家都应该理解这个数据结构的特征了。用地图的例子来解释,就是所有的数据都是餐厅所对应的地点,先把相邻的餐厅划分到同一块区域,划分好所有餐厅之后,再把邻近的区域划分到更大的区域,划分完毕后再次进行更高层次的划分,直到划分到只剩下两个最大的区域为止。要查找的时候就方便了。

下面就可以把这些大大小小的矩形存入我们的R树中去了。根结点存放的是两个最大的矩形,这两个最大的矩形框住了所有的剩余的矩形,当然也就框住了所有的数据。下一层的结点存放了次大的矩形,这些矩形缩小了范围。每个叶子结点都是存放的最小的矩形,这些矩形中可能包含有n个数据。

一棵R树满足如下的性质:

  1. 除非它是根结点之外,所有叶子结点包含有m至M个记录索引(条目)。作为根结点的叶子结点所具有的记录个数可以少于m。通常,m=M/2。

  2. 对于所有在叶子中存储的记录(条目),I是最小的可以在空间中完全覆盖这些记录所代表的点的矩形(注意:此处所说的“矩形”是可以扩展到高维空间的)。

  3. 每一个飞叶子结点拥有m至M个孩子结点,除非它是根结点。

  4. 对于在非叶子结点上的每一个条目,i是最小的可以在空间上完全覆盖这些条目所代表的店的矩形(同性质2)。

  5. 所有叶子结点都位于同一层,因此R树为平衡树。

R树是一种能够有效进行高维空间搜索的数据结构,它已经被广泛应用在各种数据库及其相关的应用中。但R树的处理也具有局限性,它的最佳应用范围是处理2至6维的数据,更高维的存储会变得非常复杂,这样就不适用了。近年来,R树也出现了很多变体,R*树就是其中的一种。这些变体提升了R树的性能,感兴趣的读者可以参考相关文献。